
2020-09-09

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dietl

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

 Some rights reserved.

Introduction to classes

2
Introduction to classes

Outline

• In this lesson, we will:

– Describe issues with using only primitive data types

– Look at examples where simple local variables are insufficient

– Introduce the idea of classes to solve this problem

3
Introduction to classes

Limitations of primitive data types

• To this point, we have discussed primitive data types:

 char

 short int long

 float double

 bool

– In reality, most complex objects require more parameters to
describe them

• Even now, every time we send an array as an argument,

 we must also send the capacity as a separate parameter

4
Introduction to classes

Limitations of primitive data types

• Suppose you create a triangle element for a tessellation

– Such a triangle has:

• Three corners

– Each corner has three coordinates

• A color

– A color has three values: red, green and blue

– This is just 12 variables

2020-09-09

2

5
Introduction to classes

Limitations of primitive data types

• Suppose we author functions to render or manipulate such triangles

– Each function could have up to twelve parameters

• Suppose we now add a transparency

– We may have to update every function,
 and consequently, every updated function call

6
Introduction to classes

Limitations of primitive data types

• Now, suppose we wanted to create a simple surface:

– Here we have eleven triangles

– This is 99 coordinates, 11 colors and 11 transparency levels

• We could store this as a number of arrays

– However, we must still pass a number of arrays

• Suppose after a while, you want to add a fountain fill

– Each triangle now requires direction and a second color

– Now we must update every function
and every function call again…

7
Introduction to classes

Limitations of primitive data types

• Such tessellations are the basis of most rendered images

– This one was created by Gilles Tran (see http://www.oyonale.com/)

8
Introduction to classes

Limitations of primitive data types

• Also, notice that color is something independent of a triangle

– Does every object that has a color need to deal with colors
independently?

http://www.oyonale.com/
http://www.oyonale.com/

2020-09-09

3

9
Introduction to classes

Student records

• Suppose you want to create a marks manager

– Every student has:

• A given name or names std::string Syed

• A surname std::string Inzamam-ul-Haq

• A uWaterloo student ID number std::string 20071005

• A uWaterloo user ID std::string inzi

• A program std::string COMPE

• A list of zero or more courses, each of which has:

– A subject ID std::string ECE

– A subject number std::string 150

– A term in which it was taken std::string 0979

– A grade int 71

10
Introduction to classes

Student records

• All this data could be stored in arrays and arrays of arrays…

– We could author a number of functions to calculate:

• Term averages

• Overall averages

– Much of this data would have to be passed to these functions

• Once again, suppose we want to add grading designations

– Only some courses count towards the term and cumulative
averages

– Once again, we’d have to modify all functions that require this
information, and all function calls to these functions

• Engineers cannot have more than three failed courses

– While updating grading designations,
 one may forget to update such code, as three failed courses only
 count those that count towards averages

11
Introduction to classes

Student records

• Additionally, suppose someone makes a mistake:

– They use these arrays but accidentally assign a grade of 110

– What if the course was listed as ECE 155, instead?

• There is no way to check this,
 as any user can modify any entry in any of the arrays

• Suppose that a user accidentally modifies the capacity of an array:

 if (courses_taken[n] = 0) {

 // The 'n'th student has not taken any

 // courses yet

 } else {

 // Calculate the overall average

 }

12
Introduction to classes

Classes to the rescue

• Classes are a means of aggregating and also protecting data

– Definition: aggregate (noun)

A whole formed by combining several (typically disparate) elements.

– Any such type is a collection of member variables,

 each of which is either a primitive data type, or even other classes

• Unlike arrays, different member variables can have different types

– Any local variable of that type allows each member variable to have

 different values

– Like variables of type int and double that can be modified and

passed to functions,
 instances of classes can have their member variables modified and
 yet they can be passed as a whole to functions

2020-09-09

4

13
Introduction to classes

Summary

• Following this lesson, you now

– Understand the issues with primitive data types

– Understand the need for user-defined aggregate data types

– Have an idea as to what we will be covering in this section

14
Introduction to classes

References

[1] No references?

15
Introduction to classes

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

16
Introduction to classes

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

